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The present paper examines hydroclimatic dynamics in southwestern Romania drylands, which is one of
the country’s most heavily affected regions by climate change. The analysis focuses on two of the region’s
representative catchments (Drincea and Desnatui), covers the past five decades (1961–2009), and is based
on climate data (mean monthly and annual climatic water balance values – CWB, expressed in mm)
and hydrological data (mean monthly and annual streamflow rate values – SFR, expressed in m3/s). The
data were provided by five regional weather stations, i.e., by five gauging stations located within the
two catchments. The analysis was conducted on three temporal scales (annual, seasonal and monthly),
and used statistical methods, such as Mann–Kendall test/Sen’s slope method for trend analysis, and
Spearman/Student test for the statistical association between climatic and hydrological parameters. The
results indicated an overall increase in climatic water deficit, with direct effects on streamflow reduction.
Statistically significant trends (climatic water deficit increase and streamflow decrease) were identified
especially in spring (with maximum rate values of (−1.66 mm/yr)/(−81.3 mm/49 yrs), for the CWB,
and (−0.02 m3/s/yr)/(−0.9 m3/s/49 yrs), for the SFR). In some cases (mainly in the autumn months) it
was found that, while climatic water deficit has decreased, the streamflow rate has increased. Statistical
correlations revealed the relationship between the considered hydroclimatic parameters, with a particu-
larly high statistical significance in spring and summer. Weak and inverse correlations between climatic
and hydrological parameters can be explained by the role of other factors controlling the streamflow,
both natural (soil and lithology) and anthropogenic (wetland drainage, water body conversion, dam and
reservoirs building).

1. Introduction

It is unanimously accepted that Earth is currently
experiencing a series of both global and regional

environmental changes, which intensified, especially
after 1950, in the so-called Great Acceleration
period (Kolbert 2011; Steffen et al. 2011). Changes
in climatic parameters represent one of the most
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important global environmental issues, and this
is due, mainly, to anthropogenic CO2 emissions,
whose concentration increased in the atmosphere
from approximately 280 ppm in the 1800s, to
370 ppm in the 2000s (Sterman and Sweeney 2007;
Crueger et al. 2008), and to about 400 ppm at
present (Molyneux et al. 2012; CDIAC 2014).

As the climate and hydrological systems are
closely interconnected in terms of water and energy
balances, disturbances affecting the main climatic
parameters (overall temperature increase and rain-
fall rate decrease in numerous regions worldwide)
have a direct or indirect impact on water resources,
which are of paramount importance, both socio-
economically and environmentally. This impact is
mainly reflected by changes in hydrological para-
meters and river streamflow regimes. Thus, in the
context of rainfall rate decrease, a water discharge
diminution was noticed in various regions of
the globe (e.g., vast areas in Africa, southern
and southeastern Europe, eastern and southeastern
Asia and eastern Australia) (Gou et al. 2007; Dai
et al. 2009; Ma et al. 2010; Hannaford et al. 2013;
He et al. 2013). There are, however, cases when the
river streamflow has grown in areas experiencing
increasing rainfall rates, over recent decades, such
as certain areas of northern Eurasia, northern
North America, southern South America and east-
ern Africa (Genta et al. 1998; Lins and Slack 1999;
Groisman et al. 2001; Peterson et al. 2002; IPCC
2007; Pasquini and Depetris 2007).

Another important effect of climate change is the
disruption of hydrological regimes, in the context
of global warming. A relevant example is the accel-
erated occurrence of high spring waters as a result
of temperature rise and snow melt in upper catch-
ments (Cayan et al. 2001; Zhang et al. 2001; Burn
and Hag Elnur 2002; Hodgkins et al. 2003; Barnet
et al. 2005; Stewart et al. 2005; Zaharia and Galie
2007; B̂ırsan 2013, 2014; Perju et al. 2013a, b).
Some of the regions most sensitive to these hydro-
climatic perturbations are western U.S., Canadian
Prairies, the Andean region of South America, the
Himalaya–Hindu Kush region, and even central
and northern Europe (Barnett et al. 2005).

In the future, according to climate scenarios,
it is estimated that regions such as mid-latitude
western North America, southern Europe, southern
Africa, the Middle East will experience a decline
in streamflow (10–30%) by 2050, while in others
regions (southern South America, eastern equato-
rial Africa, high latitude regions in North America
and Eurasia), the river streamflow rates will
increase by 10–40% (Milly et al. 2005).

In Romania, previous studies conducted in var-
ious areas revealed connections between climate
and streamflow variabilities over the past decades
(R̂ımbu et al. 2002; Ştefan et al. 2004; Ghioca

2008, 2009; Neculau and Zaharia 2009; Zaharia
and Beltrando 2009; Chendeş et al. 2010; Ciuinel
and Onţel 2012; B̂ırsan et al. 2014; Mitof and
Prăvălie 2014; Prăvălie et al. 2015). Recent stud-
ies conducted on a large number of catchments,
showed that, overall, in the last half century, sea-
sonal streamflow decreased during spring and sum-
mer, while it increased during autumn and winter
(B̂ırsan et al. 2012, 2014; B̂ırsan 2013). This can
be explained by the climate change affecting the
country especially in the second half of the 20th
century, i.e., temperature rise in winter, spring and
summer, and increase in rainfall rate in autumn
(Busuioc et al. 2009, 2010). While the streamflow
rise in autumn and winter is caused by increased
rainfall (rise in rainfall during winter as a result
of increase in temperature), the spring and sum-
mer streamflow decrease is a consequence of the
snow layer diminution and increased evaporation,
respectively (B̂ırsan 2013; Perju et al. 2013a, b;
B̂ırsan et al. 2014).

The present paper aims to analyse trends of
hydroclimatic dynamics and the relationship be-
tween the variation of certain climatic and hydro-
logical parameters in the southwestern Romania
drylands, over the past five decades (1961–2009).
The study area is an important agricultural region
of Romania, where climate change and the related
hydrological impact can have major consequences
(socio-economic and ecological), which makes this
study both relevant and original, as no such
approach has ever been made for this region, at the
given spatial and temporal scales.

2. Study area and major hydroclimatic
features

The study area is located in southwestern Romania
(figure 1a). The analysis focuses on two of the
region’s main catchments – Drincea (735 km2) and
Desnatui (2044.4 km2) (Prăvălie et al. 2015). The
two main rivers are tributaries of the Danube River.
The catchments’ lower sectors overlap the Oltenia
Plain (western subunit of the Romanian Plain),
while the upper ones overlap the Balacita Pied-
mont (subunit of the Getic Plateau) (figure 1a, b).

In terms of altitude, landforms span over 327 m
(with a maximum value of 348 m above the m.s.l.
in the plateau area, and a minimum value of about
20 m above the m.s.l. in Danube’s floodplain, which
constitutes the southern border of the Oltenia
Plain), with generally low slopes (at most 20◦ in
valley sectors). Although an important feature of
the Oltenia Plain landforms is related to the pres-
ence of sand deposits, which can, however, have a
major impact on runoff by favouring infiltration,
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Figure 1. (a) Location of the study area in Romania and spatial representation of the UNEP (United Nations Environment
Programme) Aridity Index (mm/mm) at country level and (b) the locations of the analysed weather/gauging stations in
the study area.

streamflow in the catchments analysed is influenced
by this to a lesser extent, considering that these
deposits are mainly present in the vicinity of the
study area.

The study area is characterised by a temperate
continental climate with oceanic and Mediterranean
influences that generate greater amounts of precip-
itation in the country’s southwestern region and
higher temperatures, compared with other regions
in southern Romania (Sandu et al. 2008). Mean
multiannual temperatures range from 11 to 12◦C,
with a lower interannual coefficient of variation
than the same of rainfall (table 1). Annual rainfall
amounts range from 500 to 670 mm, with an inter-
annual coefficient of variation of 20–25% (table 1).
The temperature regime is characterised by mini-
mum values in January and maximum values in
July (figure 2a). With regard to rainfall, the highest
values are specific to May and June, and the lowest
to January and February (figure 2a).

In terms of climatic aridity, the two catchments
overlap by more than 80% of dry sub-humid areas
(figure 1a), which is a characteristic of the country’s
southwestern region (Prăvălie et al. 2016). This
dryland class, defined by the ratio between precipi-
tation and potential evapotranspiration (according
to the UNEP Aridity Index) falling into the 0.5–
0.65 mm/mm interval (considering the 1950–2000
multiannual period) (Trabucco and Zomer 2009), is
a major restrictive factor for local water resources,
given the significant climatic water deficit.

Table 1. Data on analysed weather stations and main cli-
matic parameters (1961–2009 period).

Weather Altitude P (mm) Cv T Cv P

stations (m)* T (◦C)** ** (%)** (%)**

Drobeta Turnu 78.2 12.2 667.5 5.4 20.9

Severin

Calafat 62.2 11.7 532.1 6.3 20.8

Craiova 193.2 11.3 514.1 6.2 25

Bechet 37.2 11.3 519.4 5.8 19.8

Bailesti 58 11.3 558.8 6.1 20.3

T = Mean multiannual temperature; P = Mean multi-annual
precipitations; Cv = Coefficient of variation.
*According to NMA (2014);
**based on data provided by Klein Tank et al. (2002) and
NMA (2014).

Also, the rivers draining Oltenia Plain are
generally short (most of them <100 km long) and
have a low density (<0.3 km/km2) (Savin 2008).
The main rivers are Drincea and Desnatui, origi-
nating in the Piedmont region (Balacita Piedmont)
(figure 1b). While the rivers are supplied mainly
by rainfall and snowmelt (up to 65%), groundwa-
ter can also contribute, in certain cases, up to 45%
of discharge (Pişota 2005).

Average multiannual streamflow (1961–2009) are
low, with values ranging from 0.43 to 2.36 m3/s,
and significant interannual variations (table 2).
Throughout the year, high discharge values are
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Figure 2. (a) Average multi-annual monthly temperature and precipitation variation (average values of the two parameters
at the five weather stations between 1961 and 2009) and (b) average monthly discharge rate (% of the average annual
volume), between 1961 and 2009.

Table 2. Morphometric and hydrologic data on the analysed
rivers.

Hydrometric L A Hm Q Cv

River stations (km)* (km2)* (m)* (m3/s)** (%)**

Drincea Corlatel 43 220 240 0.43 61.3

Cujmir 10.4 680 195 0.91 48.7

Desnatui Dragoia 53.7 216 170 0.45 61.3

Goicea 10 1710 132 2.36 41.7

Baboia Afumati 70 560 134 0.94 69.8

L = Distance from confluence; A = Catchment’s area until
the gauging station; Hm = Catchment’s mean altitude cor-
responding to the gauging station; Q = Mean multi-annual
streamflow (1961–2009 period); Cv = Mean annual stream-
flow variation coefficient (1961–2009 period).
* According to National Institute of Hydrology and Water
Management database (NIHWM 2014);
** Based on data provided by National Administration,
Romanian Waters - Jiu Water Directorate (JWD 2014).

typical for winter and spring (with a maximum of
15.6% of the average annual volume in March),
while the summer and autumn streamflow rates
are low (with a minimum value of 5.1% in August–
September) (figure 2b), driven largely by ground-
water supply (Pişota 2005).
In the catchments studied, there are no major

anthropogenic influences on streamflow. The most
important one is the Fantanele reservoir on Desnatui
River (figure 1b), which influences the downstream
streamflow regime (at Goicea gauging station).
This reservoir was built in 1973 and has a water
volume of approximately 40 million m3.

Given the autochthonous nature of rivers and
relatively low human interventions, the streamflow
is strongly conditioned by the region’s climatic par-
ticularities. Although oceanic and Mediterranean
influences can have a positive impact on stream-
flow through higher rainfall amounts, local climatic
particularities such as frequent warm air advection
processes, generally originating from northern Africa
(generating dryness and drought phenomena
mainly in the plain region), and high temperatures

(which increase evapotranspiration) (Ciulache 2005;
Dumitrascu 2006) can create the premises of cli-
matic stress on streamflow regime in this drylands
area. This climatic stress has already caused major
disruptions in recent decades to other environmen-
tal components (either ecological, such as forest
ecosystems, or anthropogenic, e.g., agricultural
systems) in southwestern Romania drylands, as
signalled by certain studies based on the analysis of
satellite images and statistical data series (Prăvălie
et al. 2014a, b, 2016). Considering the large num-
ber of municipalities in the analysed catchments
(about 130) and the fact that 83% (2314 km2) of
their total surface is being used as agricultural
land (of which 80%, i.e., 1855 km2, is arable land)
(CLC 2006), maintaining optimal water resources
in this region, in the context of changing climate
over the recent decades (Dumitraşcu 2006; Bojariu
et al. 2012; Prăvălie 2013a; Prăvălie et al. 2014b),
is crucial for the socio-economic activities.

3. Data and methods

In order to quantify hydroclimatic dynamics and
the relationship between climate conditions and
streamflow, two major data categories were used –
climatic and hydrological.

The main climatic data consist of average
monthly and annual values of air temperature,
and monthly and annual rainfall amounts, recorded
between 1961 and 2009 at five weather stations
located in the vicinity of the two catchments:
Drobeta Turnu Severin, Calafat, Craiova, Bechet
and Bailesti (figure 1b, table 1). The data were
provided by the European platform for climate
data ECA&D (European Climate Assesment and
Dataset) (Klein Tank et al. 2002) for the Drobeta
Turnu Severin and Craiova stations, and by the
National Meteorological Administration (NMA
2014) for Calafat, Bechet and Bailesti stations.
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Based on these data, the climatic water balance
(CWB) was computed as the difference between
precipitation (P ) and potential evapotranspiration
(PET). The potential evapotranspiration parame-
ter (mm) was computed based on average monthly
temperatures with Thornthwaite’s methodology
(Thornthwaite 1948), based on the relationship
(Sandu et al. 2008):

PET = 16×
(
10t

I

)a

F (λ), (1)

where t is the average monthly temperature (◦C);
I is the annual thermal index calculated using the
formula I =

∑12

n=1 in, in = (t/5)
1.514

; a = 6.75 ×
10−7×I3−7.71×10−5×I2+1.79×10−2×I+0.49;
and F (λ) is the adjustment factor depending on
the latitude and the month of the year.

Despite limitations of this method resulting
from the neglect of other important factors influ-
encing the evapotranspiration process (e.g., wind
speed) (Bandoc and Golumbeanu 2010; Bandoc
2012), the method is advantageous due to the fact
that it requires minimal data input, and generally
provides satisfactory results, as was the case for
the Romanian territories (Păltineanu et al. 2007;
Bandoc et al. 2013; Bandoc et al. 2014; Prăvălie
and Bandoc 2015). The CWB was considered to
be an appropriate synthetic indicator for climate–
streamflow relationship analysis, as it integrates
essential climatic parameters (corresponding to the
input and output processes of atmospheric humi-
dity) influencing streamflow. A similar indica-
tor was applied in previous studies conducted on
Romanian territory, which aimed to identify the
areas affected by drought and aridity based on
humidity deficit values (Păltineanu et al. 2007,
2009; Prăvălie and Bandoc 2015).

Hydrological data consist of average monthly
streamflow measured over the same period as the
climatic parameters (1961–2009) at the Corlatel and
Cujmir gauging stations located on the Drincea
River, Dragoia and Goicea stations on Desnatui
River, and Afumati station located on the
Baboia River (tributary of the Desnatui River)
(figure 1b, table 2). The data was provided by the
‘Romanian Waters’ National Administration, Jiu
Water Directorate (JWD 2014). Also, the data was
acquired in full for the entire period 1961–2009,
except for the Afumati station (founded in 1964),
for which the data was obtained for the period
1961–1963 by means of the regression method
(based on the data corresponding to the closest
station, Goicea), in order to cover the entire ana-
lysed period of 49 years. The streamflow values
resulted in the hydrological parameter, streamflow
rate (SFR).

In terms of methodology, the study includes
three steps:

• hydroclimatic data series temporal variability
analysis,

• identification and quantification of hydroclimatic
trends, and

• analysis of the statistical relationships between
climatic and hydrological parameters.

In the first step, the analysis of the two indicators’
variability (CWB and SFR), over the entire period,
was conducted both annually and seasonally
through the Box–Whisker plot method (Boxplot).
Differences in data series temporal variability are
thus observed based on outliers (1.5 · IQR) and
extreme values (3 · IQR) for each station (IQR =
the interquartile interval). As a result, the variabi-
lity of the median and of the third and first quartiles,
as well as the minimum and maximum values,
between which IQR is positioned as an intermedi-
ate trend indicator, was highlighted (Martin and
Buishand 2012).

For a better visualisation, analysis and inter-
pretation of temporal variations of the CWB and
SFR, their monthly values were plotted graphi-
cally in a GIS-based vector grid (Cheval et al.
2003). The method, adapted for this particular
study, implies the use of a parallel point grid
consisting of 12 columns (which represent the
number of months) and 49 lines (the number of
years between 1961 and 2009), with each point
containing the climatic/hydrological parameter’s
value corresponding to the intersection of rows and
columns (Prăvălie et al. 2014b).

The second step aimed to identify and quan-
tify hydroclimatic trends on three temporal scales
– annual, seasonal (spring, summer, autumn and
winter) and monthly, over the 1961–2009 period.
The trend analysis was performed by means of the
Mann–Kendall (MK) test, used to identify trend
types and statistical significance levels, and of the
Sen’s slope method, applied for quantifying the
magnitude of linear trends (Mann 1945; Kendall
1975). These methods were used in many studies
on climatic and hydrological temporal variabil-
ity in different regions of the world (Fu et al.
2004; Kahya and Kalayci 2004; B̂ırsan et al. 2005;
Ling et al. 2011; Shahid 2011; Danberg 2012; Reiter
et al. 2012; B̂ırsan 2013; Croitoru et al. 2013; Dhital
et al. 2013; Huang et al. 2013; Liu et al. 2013,
2014; Qi et al. 2013; Zhang et al. 2013; Marin
et al. 2014; Mitof and Prăvălie 2014; Wagholikar
et al. 2014; Zarenistanak et al. 2014; Bandoc and
Prăvălie 2015; Palizdan et al. 2015; Prăvălie and
Bandoc 2015; Sabzevari et al. 2015; Singh et al.
2015; Zhu et al. 2015). Data processing was per-
formed with the Excel MAKESENS application,
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developed by the Finnish Meteorological Institute
(Salmi et al. 2002). The application operates on
two types of statistical analyses – upward or down-
ward monotonic trend analysis using the Mann–
Kendall test, and linear trend slope quantification
using Sen’s non-parametric method (Gilbert 1987).

The Mann–Kendall test is based on Z statistics,
which for series with more than 10 values, can be
defined by the equation (Salmi et al. 2002)

Z =

⎧⎪⎪⎨
⎪⎪⎩

S−1√
VAR(S)

if S > 0

0 if S = 0
S+1√
VAR(S)

if S < 0
. (2)

In the above equation, S =
∑n=1

k=1

∑n

j=k+1sgn(xj−xk),
where n = total number of years; xj and xk are the
annual values for years j and k(j > k);

sgn(xj − xk) =

{
1, if xj − xk > 0
0, if xj − xk = 0
− 1, if xj − xk < 0

and VAR(S) = 1
18
[n(n−1)(2n+5) −

∑q

p=1tp(tp−1)

(2tp + 5)], where q is the number of clusters; tp is
the number of values in a cluster of order p.

A positive or negative trend is indicated by
a positive or negative Z statistics value, respec-
tively. The statistical significance (α) of the trend
is shown by MAKESENS for four thresholds, i.e.,
α = 0.001, α = 0.01, α = 0.05 and α = 0.1.
The Sen’s nonparametric method allows the

estimation of the linear trend slope (as change per
year). It corresponds to Q in a continuous mono-
tonic increasing or decreasing function of timef(t):
f(t) = Q+B, where B is a constant.

According to Salmi et al. (2002), Sen’s method
is based on the equation

Qi =
xj − xk

j − k
, (3)

where j > k and i = 1, . . . ,N ; xj and xk are data
values at times j and k. For n values in series x,
there will be N = n(n– 1)/2 values of Q.

The Sen’s estimator of the slope is the median
of these N values of Qi. The N values of Qi are
ranked from the smallest to the largest, and the
Sen’s estimator is

Q = Q[(N+1)/2] if N is odd, (4)

or

Q =
1

2

(
Q[N/2] +Q[(N+2)/2]

)
if N is even.

In the third step, statistical relationships on
three temporal scales (annual, seasonal, monthly)
between climate parameters (rainfall, PET, CWB)
and streamflow (SFR) were quantified by using

Spearman’s test. As the data did not have a normal
distribution (especially the hydrological data,
which showed apparent distribution asymmetries),
and the Pearson correlation coefficient could not
be computed, Spearman’s rank correlation coef-
ficient (Rs) was used, based on the relationship
(Dragomirescu 1998)

Rs = 1− 6×
∑N

i=1(Xi − Yi)

N × (N − 1)
, (5)

where Xi and Yi are the ranks of the two variables,
and N is the sample size (number of pairs).

The Student test (tυ) was used in order to test
the statistical significance, based on the equation
(Dragomirescu 1998):

tv = Rs ×
√

N − 2

1−R2
s

∼ tN−2. (6)

The test has a t (Student) distribution with υ =
N–2 degrees of freedom, and the significance of
parameters is the same as for the previous equa-
tion. Reference values of the Student test were
computed for the significance levels 0.05, 0.01 and
0.001.

In order to conduct the analyses, climatic and
hydrological data were clustered according to the
smallest distance between stations, thus resulting
in five couples of hydroclimatic data: Drobeta
Turnu Severin–Corlatel, Calafat–Cujmir, Craiova–
Dragoia, Bechet–Goicea and Bailesti–Afumati
(figure 1b). It was considered that this hydrocli-
matic clustering has best reflected the most likely
relationship between the weather and gauging sta-
tions (located in relatively homogeneous landform
conditions) available in the present study.

4. Results

4.1 Hydroclimatic variability

The analysis of climatic water balance (CWB) and
streamflow rate (SFR) variability through the Box–
Whisker plot method highlighted particular situa-
tion for each indicator and for each temporal scale
(figure 3). With regard to annual values, CWB dis-
tributions for all stations show a high box, without
any extreme values, except for 1–2 outliers. Sea-
sonally, the interquartile interval (IQR) is not very
well developed anymore, with an average number
of 2 outliers per season. It can be noticed that,
for this parameter, neither the annual nor the sea-
sonal distributions have any extreme values, except
for a single one in winter (at Craiova station),
which means that the distributions are generally,
relatively uniform (figure 3a, c, e, g, i).
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Figure 3. Annual (A) and seasonal (W: winter, Sp: spring, Su: summer, Au: autumn) climatic water balance (CWB) and
streamflow rate (SFR) variability at (a, b) Drobeta Turnu Severin–Corlatel, (c, d) Calafat–Cujmir, (e, f) Craiova–Dragoia,
(g, h) Bechet–Goicea and (i, j) Bailesti–Afumati data couples (◦: outliers, ∗: extreme values).

For the hydrological parameter (SFR), both
annually and seasonally, the median is not positioned
in the center of the box (except for the winter
seasons at Cujmir, Goicea and Afumati stations),
which indicates that the probability distribution is
not normal, but asymmetric (figure 3b, d, f, h, j).
The most extreme values were recorded at the Cor-
latel and Dragoia stations. Moreover, SFR variabil-
ity shows that the IQR is narrower especially in
summer and autumn at all stations (except for the
Afumati station), and the median is small, which
points to a reduced streamflow rate in these sea-
sons. Conversely, in spring, the IQR is wider at all
stations, as the SFR has a larger variance and a
higher median value.

A relatively high SFR variability can, therefore,
be noticed, as opposed to the CWB, considering
the visibly higher number of extreme values. At the
same time, it can be stated that the distribution
of the CWB values somewhat approaches a normal
distribution, unlike the SFR hydrologic indicator,
the distribution of which is asymmetrical.

The CWB and SFR annual variation analysis
between 1961 and 2009, based on the vector grid
method, highlighted oscillation changes, especially
in the last two to three decades (figure 4).

While both CWB and SFR values had apparent
decreases after 1985, there are certain monthly dif-
ferences for each parameter. In order to represent
these differences graphically, equal intervals were
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Figure 4. Hydroclimatic variability between 1961 and 2009, for the (a, b) Drobeta (Turnu Severin)–Corlatel, (c, d) Calafat–
Cujmir, (e, f) Craiova–Dragoia, (g, h) Bechet–Goicea and (i, j) Bailesti–Afumati data couples.
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established for CWB (50 mm) and SFR (0.5 m3/s)
values in variability graphs, which is necessary for
comparing oscillations of the analysed data clusters.
Thus, for the CWB, a decrease can be noticed
especially after 1990, in summer months, when
deficit values start exceeding the −150 mm thresh-
old. Also, other important deficit intervals (e.g.,
between −100 and −150 mm) become increasingly
apparent over the last two to three decades. The
average streamflow (SFR) decreased especially in
spring months when, for instance, the frequency of
water discharges exceeding the 2 m3/s threshold

significantly decreased after 1990 in all analysed
cases (figure 4).

Even though the most significant changes of
the two parameters occurred in different seasons,
due to annual climatology and hydrologic regimes,
there are obvious similarities in numerous cases
of hydroclimatic variations. The results obtained
through the grid method show a clear link between
CWB and SFR oscillations, in numerous instances.
For example, for the Drobeta–Corlatel couple (figure
4a, b), the 1970–1975 interval CWB has low values
during summer months (some even positive values

Table 3. Hydroclimatic trend characteristics at annual, seasonal (W: winter, Sp: spring, Su: summer, Au: autumn) and
monthly (I, . . . ,XII – months of the year) scales, at the five weather and hydrometric stations, resulting from the Mann–
Kendall (MK) test/Sen’s slope (slp.) method.

MK test/ Climatic water balance (mm) – CWB Streamflow rate (m3/s) – SFR

Scale Sen’s slp. Drobeta Calafat Craiova Bechet Bailesti Corlatel Cujmir Dragoia Goicea Afumati

Annual Test Z −1.70+ −0.11 −1.97* −1.06 −0.96 −1.53 −3.11** −2.59** −0.28 −2.31*

Sen’s slp. −2.48 −0.15 −2.42 −1.09 −1.11 0.00 −0.01 −0.01 0.00 −0.01

Seasonal W Test Z −0.92 −0.75 −0.87 −1.23 −0.97 0.77 −1.49 −0.54 0.82 −2.42*

Sen’s slp. −0.71 −0.40 −0.32 −0.54 −0.50 0.00 −0.01 0.00 0.01 −0.01

Sp Test Z −2.63** −2.70** −1.63 −0.78 −2.37* −2.42* −3.54*** −3.26** −0.77 −2.73**

Sen’s slp. −1.66 −1.16 −0.90 −0.51 −1.58 −0.01 −0.02 −0.01 −0.01 −0.02

Su Test Z −0.65 0.06 −1.16 −1.04 −0.13 0.63 −2.56* −2.17* 1.01 −1.96+

Sen’s slp. −0.67 0.06 −0.95 −0.90 −0.09 0.00 −0.01 0.00 0.01 −0.01

Au Test Z 0.32 1.73+ 1.30 0.82 1.35 1.22 −2.59** −0.84 2.78** −2.08*

Sen’s slp. 0.37 1.34 0.80 0.54 0.98 0.00 −0.01 0.00 0.02 −0.01

Monthly I Test Z −0.38 −0.56 −0.25 0.03 −0.30 2.36* −1.34 −0.02 1.57 −1.46

Sen’s slp. −0.13 −0.15 −0.05 0.01 −0.08 0.00 0.00 0.00 0.02 −0.01

II Test Z −1.99* −2.06* −2.08* −0.99 −1.90+ −0.98 −2.44* −2.00* −0.38 −2.40*

Sen’s slp. −0.66 −0.54 −0.46 −0.24 −0.57 0.00 −0.02 −0.01 −0.01 −0.01

III Test Z −1.85+ −1.56 −0.72 −0.63 −2.22* −2.38* −3.39*** −2.82** −0.77 −3.38***

Sen’s slp. −0.72 −0.47 −0.21 −0.18 −0.65 −0.01 −0.02 −0.01 −0.02 −0.02

IV Test Z −0.47 −0.73 −1.04 −0.53 −1.34 −0.41 −2.85** −2.92** 0.63 −2.39*

Sen’s slp. −0.15 −0.21 −0.26 −0.14 −0.49 0.00 −0.01 −0.01 0.01 −0.01

V Test Z −1.59 −1.15 −1.18 −0.49 −0.89 −1.35 −3.19** −2.41* 0.22 −1.97*

Sen’s slp. −0.70 −0.44 −0.43 −0.27 −0.42 0.00 −0.01 0.00 0.00 −0.01

VI Test Z 0.06 −0.89 −1.11 −1.06 −1.51 −0.91 −3.24** −3.46*** −0.28 −2.52*

Sen’s slp. 0.03 −0.34 −0.45 −0.38 −0.61 0.00 −0.01 0.00 0.00 −0.02

VII Test Z −1.41 0.28 −1.06 −0.27 0.61 1.94+ −2.22* −1.47 1.29 −1.72+

Sen’s slp. −0.49 0.10 −0.42 −0.13 0.24 0.00 −0.01 0.00 0.01 −0.01

VIII Test Z −0.53 1.11 −0.66 −0.89 0.44 2.63** −2.32* −1.09 2.72** −1.38

Sen’s slp. −0.19 0.53 −0.28 −0.32 0.22 0.00 −0.01 0.00 0.02 −0.01

IX Test Z 1.53 2.23* 1.70+ 1.35 2.53* 1.58 −2.22* −2.09* 2.76** −1.80+

Sen’s slp. 0.58 0.67 0.46 0.47 0.75 0.00 −0.01 0.00 0.02 −0.01

X Test Z 0.04 1.28 1.63 1.28 1.04 1.44 −2.53* −0.19 3.17** −2.37*

Sen’s slp. 0.01 0.41 0.47 0.40 0.33 0.00 −0.01 0.00 0.03 −0.01

XI Test Z −0.20 −0.37 −0.92 −1.25 −1.15 0.28 −2.88** −1.16 2.24* −2.12*

Sen’s slp. −0.07 −0.13 −0.22 −0.36 −0.29 0.00 −0.01 0.00 0.02 −0.01

XII Test Z 0.00 0.04 −0.01 −0.66 −0.33 1.30 −1.11 −1.12 0.83 −2.42*

Sen’s slp. −0.01 0.04 −0.01 −0.15 −0.13 0.00 0.00 0.00 0.01 −0.01

Note: Values obtained through the Sen’s slope method refer to the trends’ magnitude (negative values indicate decreasing
trends, while the positive values point to increasing trends); “+”, “∗”, “∗∗” and “∗ ∗ ∗” indicate significance at α = 0.1,
0.05, 0.01 and 0.001 level, respectively (values without these symbols indicate lack of statistical significance); 0.00 Sen’s
slope values are either positive or negative (they have the same sign as test Z values) considering the third decimal place.
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in June, July and August), coupled with high
discharges which substantially exceed the mul-
tiannual average (e.g., in July 1970, discharge
values were more than 10 times higher than
the multiannual average of 0.43 m3/s, reaching
5.1 m3/s). Similar observations can be made for
Calafat–Cujmir, Craiova–Dragoia, Bechet–Goicea
and Bailesti–Afumati, where similarities between
hydroclimatic parameter variations can not only be
noticed especially between 1970 and 1980, but also
after 2000 (figure 4c–d, e–f, g–h, i–j).

4.2 Trend analysis

Trend analysis using the Mann–Kendall test (test
Z)/Sen’s slope method showed particular situa-
tions for the two parameters and for the three
temporal scales. Annually, while CWB values have
downward trends (which indicates a climatic water
deficit increase) at all five weather stations, only
the ones at Drobeta Turnu Severin and Craiova are
statistically significant (table 3). Using the Sen’s
slope method, it was found that these two stations
show the highest negative rates, with values of −2.5
and −2.4 mm/yr, when considering the annual

change (table 3), or −121.5 and −118.6 mm/49 yrs,
when considering the net change (the entire anal-
ysed period of 49 years) (figure 5). Seasonally, while
the trends point to the same downward direction in
winter and spring, they are only statistically signif-
icant especially in spring (table 3). Although down-
ward trends were identified in summer (except for
Calafat), and upward trends in autumn (thus high-
lighting a climatic deficit decrease), the only sta-
tistically significant ones were found, at Calafat
station. In terms of trend magnitude, apparent neg-
ative rates were observed mainly in spring (maxi-
mum values of (−1.7 mm/yr)/(−81.3 mm/49 yrs)
at Drobeta Turnu Severin) (table 3, figure 5). With
regard tomonthly CWBvalues, trends are generally
not statistically significant, with some exceptions
in the February, March and September (table 3).

The SFR trend analysis reveals certain differ-
ences, especially in terms of statistical significance
(it is generally more pronounced for hydrological
data series, as opposed to climate data). Annual
values have statistically significant downward trends
for the Cujmir, Dragoia and Afumati stations (with
negative rate values of −0.6 m3/s/49 yrs, −0.3
m3/s/49 yrs, and −0.5 m3/s/49 yrs) (figure 5).
Seasonally, both upward and downward trends
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Figure 5. Variability rates in the 1961–2009 period (net change) for climatic water balance (CWB) and streamflow rate
(SFR) values (A: Annual, W: winter, Sp: spring, Su: summer, Au: autumn, I, . . . ,XII: months of the year), at the five
couples of hydroclimatic data.
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are noticed in winter, summer and autumn, with
partial statistical significance. Spring is the season
with the most obvious discharge decreases in all
five cases analysed (the maximum level of statisti-
cal significance was found at the Cujmir station,
where the negative rate peaked at −0.02 m3/s/yr,
or −0.9 m3/s /49 yrs) (table 3, figure 5).

In terms of average monthly streamflow variation,
two main cases can be distinguished: (1) between
February and June when all hydrometric sta-
tions generally have statistically significant down-
ward trends, and (2) from July to January,
when trends are mixed, with various degrees of
statistical significance (table 3). The maximum
rate (negative) was found in March, at the Cujmir
station ((−0.02 m3/s/yr)/(−1.1 m3/s/49 yrs))
(table 3, figure 5).

Regarding trend (Sen’s slope) similarities between
the five data couples, there are differences for each
case. Considering the 17 associations (1 annual,
4 seasonal and 12 monthly), while the Drobeta
(Turnu–Severin)–Corlatel couple shows 53% trend
concordance (nine cases of similarity), the high
percentage of opposing trends (47%) is relative,
as SFR at Corlatel has almost stationary trends
(trend slope close to 0) in most instances of con-
trary trends (table 3). For the Calafat–Cujmir
couple, trends are similar in 59% of cases, while
the Craiova–Dragoia, Bechet–Goicea and Bailesti–
Afumati couples reach a concordance rate of 82%,
53%, and 71%, respectively. In these cases as well,
there are many instances of stationarity associated
with contrary trends (table 3).
This similarity can also be observed for net

variability changes, estimated over the entire 49-
year period. Considering hydroclimatic variability
throughout the entire period for the 17 associa-
tions, largely similar oscillations can be identified
between the five data couples (figure 5). These
oscillations range from –121.5 mm (Drobeta Turnu
Severin, annually) to 65.4 mm (Calafat, in autumn)
for CWB values, while SFR values fall between
–1.1 m3/s (Cujmir, in March) and 1.2 m3/s
(Goicea, in October) (figure 5).

4.3 Hydroclimatic correlations

While the analysis of correlations between climatic
parameters and streamflow variations, based on
Spearman rank coefficients, generally showed an
apparent relationship between climatic and hydro-
logic parameter variabilities, there were certain dif-
ferences in each temporal scale for each data couple
(table 4).

For the correlation of annual values, a relationship
between climatic parameters and streamflow with
high significance degrees for the Calafat–Cujmir,
Craiova–Dragoia and Bechet–Goicea (table 4) can

be noticed. Seasonally, the highest correlations
correspond to spring and summer, especially for
the Calafat–Cujmir and Craiova–Dragoia couples,
similar to annual-scale results. In autumn, Spearman
coefficients only indicate significant correlations for
the Craiova–Dragoia and Bechet–Goicea couples
(table 4). For monthly values, while March has the
strongest correlations, Spearman coefficients indi-
cate a high correlation of hydroclimatic parame-
ters in all cases (except for the Bailesti–Afumati
couple) in February, May and August (table 4).

Given the fact that, between 1961 and 2009, the
CWB variation was influenced by the variation of
the two climatic parameters based on which its
value was determined (rainfall and potential evap-
otranspiration), we considered it important to esti-
mate which parameter had the bigger influence
on SFR. After attempting separate correlations
for rainfall–SFR and potential evapotranspira-
tion (PET)–SFR, on annual and seasonal scales
(table 4), as well as carrying out investigations
on the two parameters’ trends at the five weather
stations (figure 6), it was found that evapotranspi-
ration had an overall bigger influence on stream-
flow variability.

Annually, the evapotranspiration–SFR correlations
are higher, with Spearman coefficient values rang-
ing from −0.27 to −0.61, with high and very high
statistical significance (except for the Bechet–Goicea
couple), as opposed to rainfall–SFR, where corre-
lation coefficients are smaller, and the significance
is lower (table 4).

Seasonally, there are obvious differences (table 4).
The relationship between rainfall and SFR is stronger
during winter; Spearman coefficients show signifi-
cant correlations for three of the five analysed clus-
ters, while the PET–SFR correlation coefficients
are not significant for any of the analysed case studies.

The spring and summer seasons are relevant for
highlighting the strongest relations between evapo-
transpiration and SFR, with Spearman coefficients
reaching a maximum value of −0.72 (during the
summer, for the Calafat–Cujmir couple). Autumn
represents the second case in which a higher rain-
fall influence on the streamflow can be noticed.
Although the statistical significance is generally
low for both correlations of climatic parameters
and SFR, when compared to the correlated data
series of evapotranspiration and SFR, Spearman
coefficients generally have higher values for the
rainfall–SFR relationship (table 4).

The climate–streamflow relationship is also
expressed by the trends of the two climatic para-
meters used to determine the CWB (figure 6).
Although annual rainfall trends are mostly decreas-
ing, which could explain annual streamflow trends,
not all weather stations show this variability and the
trends have no statistical significance (figure 6a).
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Table 4. Correlations between climatic parameter (climatic water balance – CWB, rainfall and potential evapotranspiration
– PET) with average streamflow rate (SFR), for the five hydroclimatic data couples (n =49 values), and the resulting
Spearman coefficients.

Correlated Data couples – Spearman correlation and its significance test (Student)

parameters Temporal scale Drobeta–Corlatel Calafat–Cujmir Craiova–Dragoia Bechet–Goicea Bailesti–Afumati

CWB (mm) – Annual 0.22/1.58 0.46/3.59*** 0.54/4.34*** 0.43/3.24** 0.06/0.41

SFR (m3/s) Seasonal Winter 0.42/3.16** 0.33/2.43* 0.32/2.28* 0.20/1.38 0.12/0.8

Spring 0.34/2.46* 0.48/3.77*** 0.51/4.06*** 0.34/2.51* 0.29/2.07*

Summer 0.28/2.03* 0.51/4.07*** 0.50/3.99*** 0.42/3.20** 0.16/1.13

Autumn 0.22/1.54 0.13/0.91 0.43/3.23** 0.31/2.24* –0.03/–0.23

Monthly January 0.34/2.44* 0.22/1.58 0.42/3.15** 0.10/0.68 –0.03/–0.23

February 0.41/3.12** 0.63/5.55*** 0.40/2.97** 0.28/2.03* 0.22/1.53

March 0.60/5.09*** 0.64/5.71*** 0.49/3.88*** 0.40/2.95** 0.49/3.88***

April 0.26/1.81 0.25/1.73 0.40/2.96** 0.44/3.36** 0.06/0.44

May 0.37/2.71** 0.35/2.54* 0.58/4.87*** 0.40/3.03** 0.17/1.15

June 0.25/1.75 0.30/2.18* 0.33/2.38* 0.32/2.30* 0.2/1.43

July 0.12/0.85 0.35/2.59* 0.50/3.93*** 0.41/3.10** 0.11/0.74

August 0.40/2.97** 0.45/3.47** 0.52/4.12*** 0.36/2.62* 0.15/1.07

September 0.06/0.41 0.07/0.50 0.11/0.76 0.11/0.78 –0.38/–2.8**

October 0.30/2.17* 0.17/1.18 0.28/1.99 0.40/2.95** 0.05/0.34

November 0.18/1.22 0.26/1.88 0.43/3.22** 0.36/2.64* 0.25/1.79

December 0.35/2.53* 0.24/1.66 0.17/1.19 0.15/1.05 –0.04/–0.29

Rainfall (mm) – Annual 0.15/1.05 0.36/2.67* 0.44/3.32** 0.41/3.07** –0.06/–0.4

SFR (m3/s) Seasonal Winter 0.43/3.27** 0.33/2.40* 0.31/2.25* 0.21/1.45 0.09/0.63

Spring 0.23/1.62 0.39/2.90** 0.44/3.35** 0.28/2.02* 0.25/1.74

Summer 0.25/1.75 0.37/2.73** 0.37/2.76** 0.41/3.07** 0.02/0.11

Autumn 0.21/1.45 0.14/1.00 0.38/2.78** 0.26/1.88 –0.06/–0.4

PET (mm) – Annual –0.45/3.47** –0.61/5.33*** –0.57/4.76*** –0.27/1.91 –0.53/–4.24***

SFR (m3/s) Seasonal Winter 0.02/0.14 –0.09/0.59 –0.17/1.18 0.08/0.55 –0.07/–0.46

Spring –0.57/4.80*** –0.53/4.28*** –0.54/4.36*** –0.43/3.27** –0.39/–2.91**

Summer –0.23/1.64 –0.72/7.14*** –0.68/6.29*** –0.38/2.81** –0.48/–3.75***

Autumn –0.21/1.50 –0.03/0.17 –0.23/1.62 –0.34/2.51* –0.05/–0.35

Note: Italic values are the Spearman coefficients resulting from hydroclimatic value rank correlation; regular values represent
the computed t-test value; reference values of Student test are: for α = 0.05 (∗), t = 2.01; for α = 0.01 (∗∗), t = 2.68; for
α = 0.001 (∗∗∗), t = 3.51. Greater t values than the reference ones indicate statistically significant correlations.

However, evapotranspiration displays statistically
significant upward trends in all cases (figure 6b).
During the winter, even though evapotranspiration
has upward trends, due to the season’s low tem-
peratures its values are low, as opposed to rainfall
trend values (figure 6c–d).

In spring and summer, the strong relationship
between evapotranspiration and SFR is apparent
due to upward, statistically significant trends for
almost all cases, and also due to this climatic para-
meter’s high values, especially during the summer
season (figures 6e–f, g–h). In autumn, the rise of
rainfall amounts, coupled with an obvious decline in
evapotranspiration, points to a stronger connection
between rainfall and streamflow data (figure 6i–j).

5. Discussions

The results of the hydroclimatic dynamics confirm,
to a certain extent, the overall nationwide state,

recorded seasonally over the last decades in 44
catchments at 104 weather stations (B̂ırsan 2013;
B̂ırsan et al. 2014). This state consists of higher
streamflow rates during winter (as a result of
temperature rise, which translates into a steady
increase of liquid precipitations), lower discharge
rates in spring (due to snow layer reduction) and
summer (due to evaporation rise), as well as of
higher streamflow in autumn (resulting from rain-
fall amount increase).

The climatic parameters’ trends (rainfall and
evapotranspiration), identified in the present study,
are consistent with this general setting: tempe-
rature rise in winter (indirectly highlighted by
increasing evapotranspiration values) (figure 6d),
evapotranspiration rise in summer (figure 6h), and
rainfall amount increase in autumn (figure 6i).
However, streamflow trends display certain incon-
sistencies in winter, summer and autumn, at two/
three gauging stations. In this respect, a possible
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Figure 6. Rainfall and PET trends at the five weather stations, slope values (in parenthesis) and their statistical significance,
(a, b) annually, (c, d) winter, (e, f) spring, (g, h) summer and (i, j) autumn. Note: ‘+’, ‘∗’, ‘∗∗’ and ‘∗ ∗ ∗’ indicate
significance at α = 0.1, 0.05, 0.01 and 0.001 levels, respectively.

explanation could be provided by the two catch-
ments’ morphometric and geographic specificities,
as they are located in plateau and plain regions
(unlike the 44 catchments generally located in the
country’s mountainous areas, where river supply
and streamflow conditions vary widely), as well as
by human influences, which can differ from one case
to another.

Nevertheless, apparent relationships were found
between climatic parameters and streamflow, con-
firmed by the similarities of hydroclimatic trends,
which exceed 50% for all cases, and especially by
the results of Spearman method-based statistical
correlations, which indicated relationships between
the climatic and hydrological variables for more
than 70% in certain cases (PET–SFR correlations).
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The inverse trends and low correlation coefficients
can be explained, in most cases, by other factors
(natural and anthropogenic) which influenced the
streamflow in the catchments analysed over the
past five decades.

The lithologic and pedologic features are among
the most important natural factors controlling the
streamflow. In the studied catchments, there are
heavily permeable lithologic formations and soils
(Pleniceanu 1999). Thus, with a permeable sup-
port, coupled with generally low slopes, infiltration
is favoured, which diminishes the rainfall’s direct
influence on streamflow in certain cases (Ciuinel
and Onţel 2012).

Also, given the fact that groundwater can
contribute to streamflow by up to 45% (Pişota 2005),
at times, it is difficult to identify and quantify
the direct influence of the climatic factor on the
streamflow, by using the trend and correlation
analysis. Recent studies (Prăvălie et al. 2013)
showed that groundwater levels decreased signif-
icantly over the last two decades in southwest-
ern Romania (which causes flow reduction), in the
synergistic context of potential evapotranspiration
increase and the general collapse of irrigation sys-
tems, which makes the climate influence an indirect
phenomenon that is not easily assessable.

Anthropological factors also play a role in
streamflow dynamics. The nationwide collapse of
irrigation systems, including the country’s south-
western region, which occurred in 1990 (a point
of political change in Romania) (Prăvălie et al.
2013; Prăvălie 2013b), led to a groundwater level
decrease, at the same time with the closure of
Danube’s water transfer. This had a direct impact
on the rivers’ groundwater supply and determined
the general downward trends of streamflow (iden-
tified annually) at the stations located in the
plain region (of which the most heavily affected
were Cujmir and Afumati stations, with 100%
downward trends in all cases).

Other possible causes which influenced streamflow
variation and the relationships between the analysed
hydroclimatic parameters are related to changes
in land use. A suitable example is the closing of
the Radovan and Lipov reservoirs (located down-
stream of the Fantanele Lake), which were trans-
formed into arable land after 1990 (Savin 2004). An
influence can, therefore, be envisaged in Desnatui
River’s streamflow decrease, identified in numer-
ous instances at the two hydrometric stations
located on its course. Moreover, the streamflow of
the Desnatui River was also affected by the con-
struction of Fantanele reservoir (in 1973, with an
approximate volume of 40 million m3) and Bistret
(opened in 1972, with a 28 million m3 volume)
(figure 1b). The general upward trends noticed at
the Goicea station can be explained by the rise

of the local base level, due to the influence of the
downstream Bistret Lake.

The large scale disappearance of wetlands in the
south-west region of Romania, especially after 1980
(due to the rehabilitation projects meant to expand
agricultural areas) (Prăvălie 2013c), represents
another possible cause that might have influenced,
to some extent, the general annual streamflow
decrease recorded at the five hydrometric stations.

It is important to mention that some of the
results can be influenced by possible errors and
uncertainties related to the quality and accuracy of
the data and estimation methods. The study was
based on series of average values (annual, seasonal
and monthly) of certain climatic and hydrologi-
cal parameters, measured directly at the stations
or estimated indirectly. Therefore, although the
measured data were validated by the institutions
which provided them, in certain cases it is possi-
ble that determination methodology-related errors
might have corrupted the data. This is more likely
to have happened in the case of streamflow values,
which are indirectly estimated through the river
stage-discharge relationship, which is sensitive to
stream cross-sectional parameters.

Also, it must be mentioned that the lack of a
normal data distribution prevented a more rigorous
statistical analysis, such as a regression, which
would have allowed a quantitative approach of cli-
mate change impact on water resources. In the
hypothetical case of data series normality, slope
values would have been extracted following regres-
sion analysis, which would have allowed an estima-
tion of the lost streamflow rate quantity associated
with the one-unit amplification of climatic param-
eters (in this instance, a 1 mm increase of the
climatic water deficit). Thus, the use of a higher
number of weather/hydrometric stations, which
would cover wider areas of southern Romania and
meet the normality criterion, could make such an
approach possible, in perspective.

6. Conclusions

The analysis of hydroclimatic dynamics in south-
western Romania, based on statistical investiga-
tions on the CWB and SFR parameters, in the
period 1961–2009, showed a generally close connec-
tion between climate and streamflow and indicated
an overall water resource decline in the context
of climate change that affected the region over the
past decades. This was highlighted by the general
similitudes of hydroclimatic variations, assessed
based on mean data (Box–Whisker plot analysis
and vector grid method) or variability rates (esti-
mated with the Mann–Kendall test and Sen’s slope
method), and especially with Spearman’s rank
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correlation method which, in most cases, indicated
clear connections between the five hydroclimatic
data couples. Although the climate–streamflow
analysis was based on a relatively limited number
of stations (as a result of the limited study area),
these results can be considered representative for
the southwestern Romania drylands, as they gen-
erate new information on this issue in this region,
not studied elaborately. Such information of hydro-
climatic dynamics can be useful for the adequate
management of regional water resources, in order
to ensure their sustainability and adaptation to
climate change.
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Vasenciuc F 2007 Using aridity indexes to describe some
climate and soil features in Eastern Europe: A Romanian
case study; Theor. Appl. Climatol. 90 263–274.
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